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ABSTRACT

The present work describes the use of noninvasive diffuse optical
tomography (DOT) technology to measure hemodynamic changes,
providing relevant information which helps to understand the
basis of neurophysiology in the human brain. Advantages such as
portability, direct measurements of hemoglobin state, temporal
resolution, non-restricted movements as occurs in magnetic
resonance imaging (MRI) devices mean that DOT technology can
be used in research and clinical fields. In this review we covered
the neurophysiology, physical principles underlying optical
imaging during tissue-light interactions, and technology
commonly used during the construction of a DOT device including
the source-detector requirements to improve the image quality.
DOT provides 3D cerebral activation images due to complex
mathematical models which describe the light propagation inside
the tissue head. Moreover, we describe briefly the use of Bayesian
methods for raw DOT data filtering as an alternative to linear
filters widely used in signal processing, avoiding common
problems such as the filter selection or a false interpretation of the
results which is sometimes due to the interference of background

physiological noise with neural activity.

1 Introduction

neuroimaging technology can have a potential
use in the prognosis and diagnosis of pathologies.

Functional neuroimaging can refer to the study
of cerebral function to localize the spatial
distribution according to a task or stimulus
using technology. Neuroimaging technology
provides information which allows an improve-
ment in cerebral function knowledge in a
noninvasive manner, unlike invasive methods
such as surgical interventions. Additionally,

Many research groups have developed and
perfected noninvasive neuroimaging techniques
to study the human brain "in vivo" [1-3]. Many
years of research has resulted in the develop-
ment of imaging techniques such as functional
magnetic resonance imaging (fMRI), magneto-
encephalography (MEG), and encephalography
(EEG), which are commonly used in both research
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and clinical fields.

Functional near infrared spectroscopy (fNIRS)
is a technique in which the physical medium is
near infrared light. This technique has gained
popularity and can be used to build functional
[4-6]. {NIRS provides
portability, null magnetic interference with

human brainimages

ferromagnetic objects or other metals, non-
movement restrictions, high temporal resolution,
hemoglobin state (oxy- and deoxy-hemoglobin)
measurements, no ionizing, and low cost
compared with other neuroimaging techniques
such as fMRI or MEG. With fNIRS technique, it
is possible to reconstruct bidimensional [7] or
tridimensional functional brain images according
to the approach selected. The topographic
approach has been widely used to perform
cerebral mapping during a task or stimulus [8],
in functional connectivity studies [9] or clinical
applications [10-12], and also provides bidimen-
sional images. The tomography approach or
diffuse optical tomography (DOT) provides
functional cerebral 3D images with the use of
complex mathematic and physical theories,
improving the image resolution and positional

accuracy of optical brain imaging [13].
1.1 Neurovascular coupling

From a neurophysiology point of view, the brain
consumes around 20%-25% of the oxygen and
[14].
Neurometabolic regulation must be quick and

glucose consumed by the organism
effective to provide metabolites to the brain
through the cerebral blood flow (CBF). CBF is
regulated by a local intrinsic mechanism,
myogenic and metabolic, allowing a constant
flow rate in normal conditions. Cerebral blood
vessels interact with the neurons creating a close
relationship between them [15]. As a result of
this
coupling, there is a CBF increase generated by a

relationship known as neurovascular

Brain Sci. Adv.

neuronal activity increase. In 1890, Roy and
Sherrington [16] defined neurovascular coupling
as local changes in CBF as a product of
localneuronal activity allowing the release of
carbon dioxide (product of oxygen metabolism)
and excess heat along with the nutrient
contribution in a continuous process. This
held up by the
neurovascular coupling and occurs in a short

continuous process is
temporal-spatial scale.

Spatial resolution of the vascular response
depends on the tissue vascularization which is to
be measured. In other words, a dense capillary
network needs a greater spatial resolution than
the large blood vessels which are less confined in
the brain [17]. Initial studies have tried to
separate the larger vessels from capillary signals
using the optic density technique [18]. Posterior
studies have estimated where the vascular
response is localized at a submillimeter level [19],
at 1-2 mm [20] or at 3.5 mm [20]. The spatial
resolution estimation depends on the technique
used and the cerebral region measured.

Temporal resolution of the vascular response
shows an initial dip generated by the oxygen
metabolism during the neuronal activations.
Then, CBF increases around 1-2 s after the initial
dip, the maximum peak appears around 2—4 s as
a result of vasodilation [21]. These hemodynamic
changes are the basis of the neuroimaging
techniques to represent functional cerebral ac-
tivations.

The hemodynamic measurements vary accor-
ding to the neuroimaging technique used, e.g.,
blood oxygen level dependence (BOLD) signal
has been modeled as a linear function of the CBF
response during neuronal activity [22]. First MRI
data showed an increase in the BOLD signal
during a stimulus, followed by a decrease in the
BOLD signal when the stimulus had stopped
[23]. This dynamic process was described using

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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optical techniques [24, 25] which also measure
oxyhemoglobin (HbO) and deoxyhemoglobin
(HbR).

1.2 Absorption and diffusion

Human tissue is a turbid medium which
contains an inhomogeneous distribution of
particles such as cells or molecules. Photons are
light
propagation in the human tissue. Near infrared
(NIR)
chromophores such as the hemoglobin states
(HbO & HbR) in the cerebral tissue. Light

propagation in the tissue is scattered due to

scattered or absorbed during the

light can be absorbed by natural

inhomogeneities, e.g., the reduced scatter co-
efficient for the scalp was 7.1 cm™ while the
absorption coefficient was 0.164 cm™. The scatter-
ing coefficient for cerebral cortex was 11.6 cm™
and the absorption coefficient was 0.170 cm™,
using a wavelength of 780 nm [26].

Despite the photon scattering in the human
tissue, optical imaging is governed by the NIR
light absorption due to the presence of
hemoglobin (HbO & HDbR) in the blood system.
Each hemoglobin state absorbs NIR light in a
range of wavelengths from 690 to 750 nm for the
detection of HbR, and from 830 to 850 nm for the
detection of HbO. Absorption values and the
extinction coefficients [26] for both wavelengths
are transformed into changes in the concen-
tration of HbO and HbR by applying the
modified Beer-Lamber law [5].

1.3 Photon behavior in a turbid medium

Given a source and a detector, photon behavior
while traveling inside a turbid medium like
human tissue [27] (Fig. 1), can be:

e Ballistic the photons travel through the
medium without any scattering process,
reaching the detector in a short time, because
they travel by the shortest path. The direction

propagation is the same as the emitted light.
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Source Detector

Ballistic Photons

Quasi-coherent Photons

Diffuse Photons

Backscattered
Photons

Fig. 1 Scheme of the photon behavior in a turbid medium. The
ballistic and quasi-coherent photons reach the detector earliest
compared to the diffuse photons, for which the trajectory is
changed with respect to the initial direction.

® Quasi-coherent the photons travel in the
same direction as the light emitted, reaching the
detector in a short time. However, the trajectory
is a zig-zag skirting the obstacles.

e Diffusion or scattering the photons suffer
much scattering, processing and missing
information from the emitted light reaching the
detector later than the quasi-coherent or ballistic,
because they use a longer path.

e Backscattering the photons return in the
same direction as the emitted light, because the
travel angle is changed without reaching the
detector.

During the light-tissue interaction, both the
absorption and scattering processes can be
related to the blood system and blood cell
volume, respectively in the cerebral tissue. The
absorption process may be described as an
irradiative process transforming the power energy
into thermic energy [28], or as a radiative process
emitting fluorescence at longer wavelengths than

the absorbed wavelengths [29].

2 Biomedical applications of the NIR light

The first biomedical application of NIR light in
human tissue was published in 1977 by Jobsis
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[30], showing blood oxygenation measurements
using NIR light from approximately 700-1300 nm,
known as the optical window, because the NIR
light can pass through the tissue to a depth of
around 3-4 cm [31]. Due to the presence of
natural chromophores in the tissue (HbO & HbR)
which absorb NIR light, both are used as
cerebral activation markers [32].

NIR light is applied on the subject’s head
through LEDs or optical fibers, which are
combined as a source—detector pair recording
the changes in the optical density generated by
changes in the optical properties in each tissue
layer of the human head. Photon distribution
inside the head from a source-detector pair
placed on the head surface follows a concave
curve trajectory known as the banana shape [33].
The banana shape gives an approximation of the
depth where the optical properties change.

It is possible to measure the optical properties
for each tissue layer in the human head,
according to the distance between source—
detector pairs placed on the head surface.
Therefore, at a distance of around 3-4 cm
between a source-detector pair, the photons
contain information about the optical properties
from both intracerebral and extracerebral layers,
with the portion of cortical signals to be only
around 8%. While at a distance of 1-2 cm
between the source-detector pair, the photons
contain mostly information from extracerebral
layers. Here, we can define the closest separation
as “first-nearest neighbors”, and increasing
distance as second-third-, and fourth-nearest
neighbors (Fig. 2). Changes in NIR light attenuation
between source—detector pairs collocated on the
scalp are transformed into HbO and HbR
concentration changes by the modified Beer—
Lambert law [34].

From the neuroimaging point of view, the
optical imaging technique used to measure the

Brain Sci. Adv.
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Fig. 2 Representation of the optical fibers on the boundary of the

frontal cortex in a real space (left). Definition of nearest neighbor
measurements (right): The photon trajectory following a banana
path (arrows), is detected to a 10-20 mm distance from a source (S)
providing information from intracerebral layers. A 30-40 mm
distance from a source (S) provides information from extracerebral
layers.

functional cerebral activity provides two
modalities described in the bibliography as the
topographic and tomographic approaches. Fig. 3
shows the topographic approach using a
distance of around 2 cm between source—
detector pairs to mainly detect changes in the
optical properties at the cerebral cortex level.
Optical path lengths are interpolated and
represented in a bidimensional cerebral activity
image [7]. While the tomography approach
provides tridimensional cerebral activity images
by the use of multi-distance approach [35]. The
multi-distance approach wuses high density
source—detector pairs allowing the recording of
a greater quantity of optical path lengths at
different depths inside the head to reconstruct

high quality 3D images [36].

(a) (b)

Fig. 3 Images depict source (red)-detectors (green) pairs placed

on the head surface in: (A) Topography approach at a distance of
2—4 cm between source-detector pairs. Optical path ways (red lines)
contain information of depth regions which are transformed in 2D
activity images. (B) Tomography approach using a multi-distance
approach to acquire a high density of the optical path lengths at
different depths building 3D activity images.

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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2.1 Technology used in DOT

The existence of three instruments used in the
optical imaging is widely known nowadays and
their main characteristics are reviewed below.
Continuous wave (CW) systems source emits
light at a constant intensity into the tissue and
the transmitted and back light

intensities are measured. To prevent environ-

scattered

mental interferences, the amplitude can be
modulated by a few kHz. The CW system
measures the decreases of the detected light
intensity compared with the emitted light
intensity (Fig. 4). Because the hardware is simple
and low cost, CW technology is the most used in
neuroimaging research [31]. The following are
some commercial CW systems: NIRO-200NX
(Hamamatsu, Japan), ETG-4000 (Hitachi, Japan),
CW4-6 (TechEn, USA) and DYNOT (NIRx
Optical Neuroimaging, USA).

Frequency domain (FD) systems emit light
sinusoidally with intensity-modulation at radio
frequencies around 100-200 MHz [37]. Changes
in the tissue optical properties are obtained by
the phase difference between the detected signal
and the emitted signal [38] (Fig. 4). FD systems
use the same source—detector pair distribution
as the CW system and can combine both
instruments [39], providing qualitatively similar
reconstruction for all source—-detector pairs [40].
E.g., OxiplexTS (ISS, USA).

Time domain (TD) systems emit extremely
short light pulses (on the order of picoseconds)
inside the tissue. While the light pulses are
propagated through the tissue, the temporal
distribution of the arrival of photons to the
detector are represented by the temporal point
spread function. The TD system provides
information from different depths inside the
head according to the arrival time of the
photons to the detector. Therefore, photons

which arrive in picoseconds contain information
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from shallow regions, while photons which
arrive in nanoseconds provide information from
deep regions [38] (Fig. 4). E.g., tNIRS-1 (Hamamatsu,
Japan).

2.1.1 Components of DOT imaging technology

e Light sources must emit at least two
wavelengths in the NIR spectrum. Emitted light
intensity must be increased for the photons to
reach a greater depth of penetration [41] without
going above the limits of 4 mW/cm? maximum
intensity for NIR light deposited on the human
tissue, set by the American National Standard
Institute. The sources most used are laser diodes
(LD) which are not available at as many
wavelengths as light emitting diodes (LEDs), but
LD can be modulated faster than LEDs. Optical
bandwidths
according to the specific goal of the optical

and wavelengths are chosen
imaging application to obtain functional chromo-
phores images [42, 43]. The source types are
briefly described in Table 1.

e Light detectors are important components
in optical technology because the detected signal
is around 10-picowatts or between 7 to 9 orders
of magnitude less than the emitted signal. The
type of detector is selected depending on the
measurement to be made. Detectors must be
sensitive to acquire extremely low signal inten-
sity along with quick data acquisition, e.g., the
photo-multiplicators (PMTs) or the avalanche
photodiode (APDs). Generally, APDs are most
used because they provide a dynamic range > 107
allowing the signal to noise level (SNR) to be
over 5 orders of magnitude in the light level [44].
If the source emits white light (containing all
wavelengths), the detectors can be charge
coupled devices (CCDs) separating light spati-
ally in color by the use of a prism [41] or CMOS
sensor as an alternative to CCDs. The detector
types are briefly described in Table 1.
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Incident light, I,
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Detected light, I

TD system TD system
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Light Intensity

LV
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Fig. 4 Incident light (I,) is emitted from a source (S) and detected (I) by a detector (D) placed on the head surface at a distance between

source—detector pair (red arrow) measuring local hemodynamic changes (brain red area). In the TD system, the photons travel inside the

tissue and are detected at different times (f, time of flight: t =1, t = 2, t = 3) according to the traveled depth inside the head from ultrashort

emitted light pulses. In the FD system, the detected light amplitude is less than the incident light, which provides information about

hemodynamic changes by its phase shift. In the CW system, the detected light intensity is attenuated with respect to incident light, which

provides relative values of concentration changes; however, this system cannot measure the optical pathlength (absolute values). TD, time

domain; FD, frequency domain; CW, continuous wave.

Table1 Source and detector characteristics commonly used in optical imaging devices.

Sources Spectrum Power

Tungsten lamps Variable spectrum resolution <5mW

Light emitted diode LEDs Spectrum of 30 nm 1-30 mW

Laser diodes Spectrum limited 1-500 mW

Detectors Sampling rate Sensibility Dynamic range

Silicon photodiodes (SPDs) >10 kHz Low ~100 dB
Avalanche photodiode (APDs) >100 MHz High ~60 dB
Photo-multiplicators (PMTs) >100 MHz High, <820 nm ~60 dB
Charge coupled devices (CCDs) ~1kHz Variable > 60 dB

e FElectronics must separate each detected
wavelength and avoid the cross-talk between
spectrums [38]. Electronic size depends on the
sources, detectors and light emission used in
each instrument [31].

2.1.2  Source—detector pair configuration

In optical imaging the matrix containing the
source—detector pairs is important because the
configuration will affect the quality of reconstruc-

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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ted images, as has been shown in previous
studies. A high density of source-detector pairs
with < 1 cm distance between them will improve
the reconstructed images in resolution and
localization spatial means [45]. Moreover, a high
density configuration gives a decrease in errors
[46], SNR increase [47] and allows the separation
of the systemic noise from superficial noise [48].

In optical imaging, the distance between
source-detector pairs depends on the task
applied and the instrument used. The distance
between source—detector pairs can be minimized
if a matrix of thin design is applied and
providing many measurements of optical
pathlengths will lead to more information in
depth during the image reconstruction. Further-
more, other factors which improve the recon-
structed image quality are: the co-localization
(if sources and detectors are made of optical
fiber, they can act as source and detector
simultaneously) or the optical fiber—scalp
coupling which must be minimum to increase
the recorded signal quality. The use of optical
fibers required a rigid structure that maintains
the optical fiber positions and minimizes torque
on the fibers during the experimental session.
DOT systems must use rigid structures to hold
the fiber weight, e.g., the fibers are suspended
above the subject’s chair and organized into a
“double-halo” configuration or using a two layers
structure. Recently, a wireless system has been
developed to minimize the use of optical fiber

and its associated problems [49].

3 Light propagation in the human head

3.1 Forward modeling

The optical field has a discrepancy in the
interpretation of the light as a wave or particle.
The Maxwell equation assumes the light as
electromagnetic radiation, while the Boltzmann
equation assumes the light as a particle flow. If
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the light is interpreted as particles (photons),
then it is possible to describe the particles flow
inside a volume taking into account the time f,
position r and direction § [50].

In functional neuroimaging, the goal is to
model the changes in the light attenuation y
measured from the boundary volume 02,
generated by changes in the optical properties
4 within a volume £2:

y=Ju (1)

Given a volume, y depicts measurements
onto boundary volume, u optical properties
(absorption g, and scattering ) in a position r
within 2. J is the Jacobian operator (also
called sensitive matrix), which relates changes in
the measured light intensity y on the 0¢2 with
changes in internal optical properties x, and
can be written as J = (ay)/ (a,u). This matrix is
constructed from a model known as the forward
model, which is derived from the radiative
transport equation (RTE).

3.1.1
geometry

Light propagation simulation in variable

When the light is emitted from the head surface
it needs to cross the extra-cerebral layers such as
the scalp, skull or meninges, before and after
reaching the cerebral cortex. Light propagation
inside the head is estimated using mathematical
models because the head geometry is variable in
each subject.

Optical properties are calculated in simulation
models which mimic the head geometry.
Simulation models are generally formed by
epoxy resin and can contain titanium oxide
(scattering) and colorants (absorption) to mimic
the tissue optical properties. Light propagation
has been estimated using homogeneous
geometry to test the compensation algorithms
[51] or the image reconstruction using FD vs. CW
systems [52]. Over time, heterogenous tissue
simulating phantoms based on three or four

®SAGE
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layers which contain homogeneous medium for
each layer have been designed. These hetero-
geneous tissue simulating phantoms mimic the
head layers such as the scalp, skull, cere-
brospinal fluid and gray and white matter [53].

However, heterogeneous tissue simulating
phantoms do not follow the curvature of the
human head [45]. To solve this, semi-sphere
models were created whose surface is adjusted
to the head contour holding the heterogenous
medium to mimic the tissue layers of the human
head [54].

3.1.2 Mathematical model

The mathematic model which describes the light
propagation and is used in the DOT technique is
the RTE and its simplification, the diffusion
approximation (DA). Before the description of
the mathematical model it is necessary to define
the energy radiance R(r,,§).
dE=R(r,t,§)$-cos0-da-d*s-ds Q)
where 6 is the angle that the unit direction
vector n makes with a normal to the area
element considering a specific wavelength and
neglecting polarization terms.
RTE describes the energy changes R(r,,S$)

in time t, position r and direction § within
medium [55, 56] and can be expressed in a
differential form:

l‘z_ff+§.v1e(r,z,§)+(ﬂa+ﬂs)R(r,t,§):
C

(3)
u, [ £(8,8)R(rt,8)d*8+Q(r,1,3)
4n

where changes in the energy R(r,t,§) vary
by the absorption x4, and scattering g, c is
the speed of the light in the medium, f(8,$')
describes the probability of light scattering from
one direction § to another direction §',
Q(r,t,§) is the light emission. RTE can be
represented as energy gains by emission and

scattering redistribution, and as energy losses to

absorption. The first term represents the

Brain Sci. Adv.

changes in time, the second term depicts the
energy flowing, the third term represents the
energy losses to absorption, the fourth and last
term depicts the energy gains by radiation
scattered from §' to § and the light emission.
Solving RTE requires long computational time
and large storage capacities [57]. Therefore, the
light propagation in a turbid medium can be
described under general assumptions [58]. RTE
can be simplified using its first spherical
harmonics, Pi1 approximation to arrive at the
diffusion approximation equation (DA):
100(r,1)
c Ot
where CD(V,I) is the photon density in time ¢

~DV®(r,t)+u,@(r,t)=q(r,t) @

and position 7, q(r,t) is an isotropic source,
absorption coefficient 1, c is the speed of the
light in the medium, D is the diffusion
coefficient.

The CW system can only measure one
parameter (absorption changes) to model the
optical properties, unlike the TD and FD systems
which both
absorption in the tissue.

can measure scattering and

3.1.3 Forward modeling solution

Forward model solutions as defined in the
bibliography are analytical, stochastic and
deterministic modeling.
Analytical modeling, also called Green’s
function, can be used as a numerical model as
well as to solve partial differential equations
such as the DA in both time and frequency
domains involving a source condition: if the
source is a Dirac delta function, the Green's
function has the approximated solution. The
pulsed laser source systems (TD systems)
provide enough approximation to the source can
be computed using convolution methods [59].
Green’s function has been used to solve DA in
both homogeneous and simple geometries [60].
Stochastic modeling provides a statistic model

of the photon behavior inside a heterogeneous

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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medium and irregularly shaped geometries. The
most commonly used technique is Monte Carlo
modeling, which estimates the light trajectory
using a model of minimum variance and
increasing the estimation confidence. Basically,
the model consists of photon injection into the
medium, whose trajectory is modeled until it
leaves the medium or is absorbed. The process is
repeated many times to obtain a probability
density function which estimates the photon
trajectory. The method allows light propagation
modeling in complex geometries [59] to acquire
significant statistics and provide information on
the light propagation depending on photon—
medium interactions. Stochastic methods have
recently been improved for light propagation
modeling onto planar multi-layered tissue [61]
or onto arbitrary boundaries [62]. Another less
used stochastic method to estimate the light
propagation in a turbid medium is the random
walk theory [59].

Deterministic modeling is widely used to
solve the DA equation, and involves describing
the equation in a finite matrix which can then be
solved using matrix algebra [63]. The finite
element model (FEM) discretizes the continuous
domain into a finite number of elements based
on basis functions. FEM requires the mesh
generation formed by tetrahedral elements
connected between one another by nodes
without overlapping. During the light propaga-
tion modeling an important aspect is the
anatomy model which adds more accuracy to
the spatial distribution of the optical properties
[64]. Also, the change in the optical properties
inside the medium impacts the boundary
measurements. Therefore, the light propagation
modeling in the anatomy model impacts the
reconstructed image quality. Anatomy images
from MRI are used for light propagation
modeling at the layer level. Previously, anatomy
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images are segmented in layers (scalp, skull,
cerebrospinal fluid, gray and white matter) and
a mesh is then created by each layer, improving
anatomical details at a submillimeter scale. In a
3D volume such as an anatomy image, the first
step is to create the boundary mesh using
triangular elements covering and closing the
volume surface. After which, the volume is filled
with tetrahedral elements. There are packages
available to create FEM such as NIRFAST,
TOAST++, Mimic or Simpleware.

Light propagation modeling in human brain
functional imaging is computationally expensive
due to the iteration algorithms, which impedes
practical and clinical applications. Recently,
researchers have focused on reducing the
computation time during the forward modeling
calculation. For example, Green’s function
approximation within cylindric geometry will
allow a fast simulation of light propagation and
accelerate the image reconstruction process [65].
In addition, it’s possible to use parallelized GPU
and CPU-based architectures for calculation of
light propagation in realistic head models, i.e.,
using finite element models [66], or the Monte
Carlo method [67, 68], which can also apply to
polarized light propagation [69]. Alternatively, it
is possible to pre-calculate forward models and
project onto generic head models to save
computational time during the forward model
calculation, providing a good quality recon-
structed image and few errors in the spatial
localization [70, 71]. However, source—detector
pair spatial coordinates projected onto the real
space do not match with the spatial coordinates
projected onto the generic head model. The
spatial coordinates onto the real space must be
integrated in the generic head model used to
calculate the forward model. Both spaces (real
and generic model) are integrated using the
fiducial markers on the real space, which will be
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translocated to the generic model by the use of
spatial transformation tools [72, 73].

3.2 Inverse problem

During the image reconstruction from a turbid
medium, the relationship between photon
density (or light intensities) @ and optical
properties u is nonlinear. In DOT measurements,
changes in the light intensity A@ generated by
changes in the inner optical property Az can be
assumed as relatively differential changes,
therefore the problem can be considered as
linear [74].

Two methods have been widely described in
the bibliography to solve the inverse problem,
the Levenberg-Marquardt (LM) method [75] and
the perturbation method [76] allowing the
construction of the changes in the optical
properties according to the measured light
intensities on the surface.

3.3 Tikhonov regularization

The Jacobian matrix represents the sensitivity of
measured light intensity on the head surface
with the underlying optical properties. During
image reconstruction, the Jacobian matrix is
directly inverted as it is ill-conditioned and
ill-posed.

In DOT measurements, it is assumed that: the
distribution of the optical properties inside a
volume can be explained from measurements on
the surface and, as the depth from the surface
increases, NIR light is attenuated leading to a
disperse matrix whose values are close to zero.
As a result, the number of measurements on the
surface is less than the number of FEM nodes.
Therefore, the Tikhonov parameters are used to
extract more information about the optical
properties from an inverse matrix:

Let J, =J" (JJT +pl)_l, p is referred to as

the Tikhonov parameter which adds information
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to the solution, e.g., data calibration or prior
knowledge of the optical properties’ distribu-
tion.

A widely used method to invert the Jacobian
matrix is the singular value decomposition (SVD)
algorithm. SVD decomposes J into two ortho-
gonal matrixes UV and a diagonal matrix 2.
The diagonal matrix contains singular values
0, providing information on the propagation

errors from A® to Au. o, can be used as a

regularization parameter using a truncated SVD
which  reduces  the
dimensionality. One factor which defines the
quality of the reconstructed image is the number

inverse matrix’s

of o, as has been showed in previous studies
[77]. The selection of o, can be "ad hoc” or

using an index such as a minimum description
length (MDL) [72] .

4 Filtering methods

The DOT devices mentioned above measure
hemodynamic changes correlated with neural
activity. Hemodynamic changes are caused by
dynamics in blood volume, blood flow, and
blood oxygenation. Certain physiological signals
such as heart rate or ventilation rate are involved
in systemic blood oxygen and cerebral hemo-
dynamics which influence the scalp layer [78].
These physiological signals create background
physiological noise during functional DOT
neuroimaging experiments which is stronger
than those in anatomical regions and is mixed
with absorbed signals from the cortex, thereby
generating short-term variability involving
spatial and temporal changes throughout the
brain and scalp [79]. Some researchers have
devised methods to separate out the background
physiological noise of the signals generated by
neural activation. The most common methods
are linear filtering of the signal, such as the

application of band pass filter [40, 80, 81], low
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[82] or high pass filter [83]. Other less used
methods are Kalman filter [81, 83], adaptive filter
[85] or
envelope [86] depending on the tasks or study

[84], principal component analysis

area. A problem during the processing of DOT
data which generally occurs during signal
filtering is that the judgment of the researcher
may lead to an error in the cutoff frequencies
selected. The application of the Bayesian
algorithm as a filter method on the raw DOT
data could allow an independent procedure,
without the

paradigm or cerebral area for study, which is

influence of the researcher,
more accurate than the linear methods. Most
sophisticated methods for filtering DOT data are
based on simulated functional response
modeling [87, 88], instead of physiological data
modeling mixed with the neural response.
Background physiological activity such as the
cardiac cycle and respiration can be modeled and
removed from raw data as has been done in fMRI
data [89-91], and can be briefly explained as:

Assuming that there is a reference sensor to
measure the cardiac cycle and respiratory rate,
both signals can be modeled as a quasi-periodic
signal which can be expressed as expanded
Fourier series:

D(t)= ian cos(2mnf’) + b, sin(2wnf)  (5)

n=1

where n refers to the physiological signals in
terms of the frequency or the phase in time t. If
the physiological signal is considered in
phase ¢(7)=2n(t—1t,)/(t,—1,), then a and b
coefficients are not considered time-varying
providing a constant amplitude. If the phy-
siological signal is considered in frequency, it
acts as a function of time:

D(t)= ﬁ:an cos[2nnf(t)t] +b, sin[2nnf(t)t] (6)

Two studies have showed the reliability of
Bayesian-filtering on raw DOT data, one based
on hemodynamic response measurement during
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a cognitive task [72], and another during
repetitive transcranial magnetic stimulation [92]

5 Applications in functional brain imaging

DOT has been used in a wide variety of
applications in neuroimaging studies to measure
functional changes associated to a visual, motor,
somatosensory or cognitive stimulus or para-
digm compared with fMRI measurements to
validate the DOT system. The most common
paradigms used to validate the DOT technology
are based on somatosensory and/or motor [93, 94]
and visual stimulus or paradigms [95, 96], unlike
cognitive or language paradigms whose com-
plexity makes comparison with fMRI difficult.

The most commonly used somatosensory or
motor tasks are based on finger tapping or tactile
stimulation [93, 94] in neuroimaging studies,
because the cerebral activation amplitudes are
higher than in other paradigms such as cognitive
paradigms. Additionally, the cerebral activation
spatial distributions are known and are
reproducible. Another paradigm widely used in
neuroimaging studies is based on visual tasks
such as the retinotopic mapping on a single
subject or group subject [96] or rotating
logarithmic checkerboards [40] whose cerebral
activations are localized in the occipital cortex
and are reproducible.

Cognitive paradigms are less used in DOT
validation studies, due to the fact that cerebral
activations are subtler than other tasks such as
visual or motor tasks. In other words, the
cerebral activation amplitudes generated during
a cognitive task are less than the cerebral
activation amplitudes produced by visual or
motor tasks. Moreover, the cerebral activations
are localized in the frontal lobule where
scalp-brain distances vary between subjects and
the cerebral activations are difficult to reproduce

because they vary between subjects. Despite the
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complexity, DOT technology has been used for
measuring hemodynamic changes during a
cognitive paradigm based on an arithmetic task
[72] and during risk-decision-making response
based on Balloon Analogue Risk Task (BART)
paradigm during which the participants could
decide if they would like to keep playing the risk
task or only observe while performing the task
without making any decisions [97]. As occurs
with the language paradigms which cover the
parietal, temporal and frontal cortex making
DOT measurements difficult due to the optical
fibers and FEMs, if they are used for light
propagation inside the head, they generally
cover one cerebral lobule or region of the head.
This limitation is produced by the computational
light
modelling in the whole head. Even with this

time spent during the propagation
limitation, DOT technology has been validated
during a language paradigm execution [44].

As DOT technology is still being used in
research, the use of optical imaging in clinical
application is less, unlike topography mode
which is widely used in the diagnosis and
prognosis of disease [98]. However, there are
articles reporting the use of DOT technology to
monitor hemodynamic changes in neonate brain
injury [99-101]. Advantages, such as non-move-
ment restrictions, portability, direct measure-
ments of HbO, HbR and HbT, make the DOT
system an alternative to fMRI in populations
such as children [81] or the elderly which have
different optical pathlengths than in young
brains [102]. The use of DOT technology in a
clinical environment will open new ways of
studying awake patients, mainly in movement
diseases such as Parkinson’s or dystonia in
children or could be used as a monitoring system

during deep brain stimulation studies.
6 Conclusion

The present review describes the physical

Brain Sci. Adv.

principles underlying neuroimaging optical
technologies emphasizing the mathematical
model commonly applied in light propagation
modeling inside a turbid medium such as
human tissue. Moreover, it is noteworthy that
the filtering method based on Bayesian
algorithms is little used in the DOT data signal
processing, showing the differences between
both raw DOT data Bayesian-filtering method
and raw DOT data linear-filtering method
widely applied in the treatment of optical
signals. Noninvasive DOT imaging provides
complimentary information to other modalities
such as fMRI, however the BOLD signal
hemoglobin components are still unclear, unlike
DOT technology that measures hemoglobin
states individually. Furthermore, DOT provides
a low-cost alternative to serve populations often
unable to receive MRI or PET scans such as
young infants or the critically ill, although one
notable limitation is that NIR light penetrates
3—4 cm only reaching the cerebral cortex level.
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